Heterogeneous Graph Contrastive Learning for Recommendation

Mengru Chen
South China University of Technology
Guangzhou, China
cmr777qyx@gmail.com

Wei Wei University of Hong Kong Hong Kong, China weiweics@connect.hku.hk Chao Huang* University of Hong Kong Hong Kong, China chaohuang75@gmail.com

Yong Xu South China University of Technology Guangzhou, China yxu@scut.edu.cn Lianghao Xia University of Hong Kong Hong Kong, China aka xia@foxmail.com

Ronghua Luo South China University of Technology Guangzhou, China rhluo@scut.edu.cn

https://github.com/HKUDS/HGCL

(WSDM-2023)

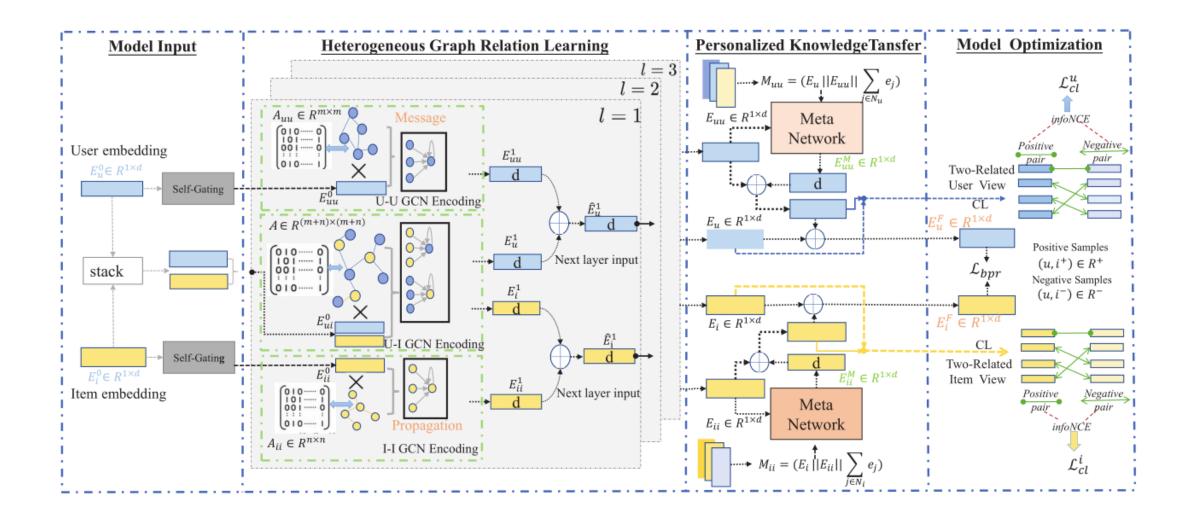
Reported by Ke Gan

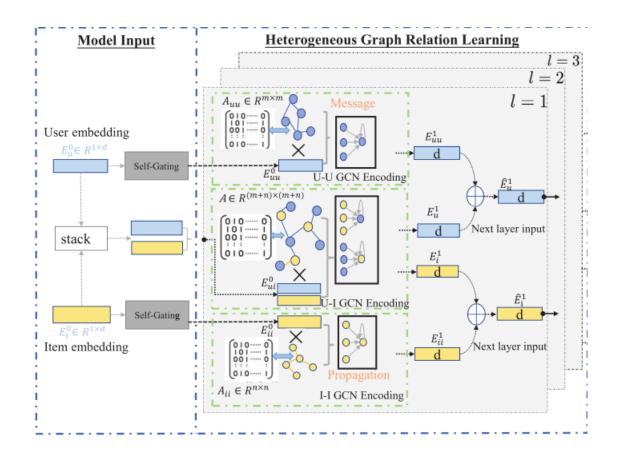
- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

GNN-based collaborative filtering modelsmerely focus on homogeneous interaction relationships in user-item connection graphs

the limitation of sparse training labels may not generate quality user/item embeddings



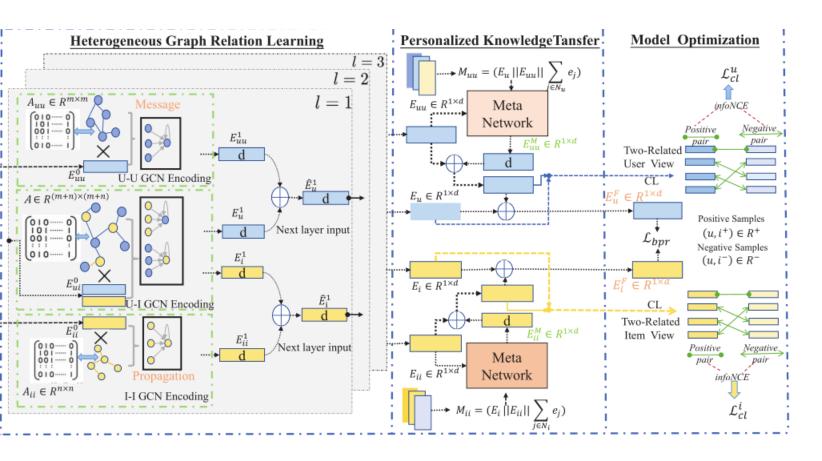


$$\mathbf{E}_{uu}^{0} = \mathbf{E}_{u}^{0} \odot \sigma(\mathbf{E}_{u}^{0}\mathbf{W}_{g} + \mathbf{b}_{g}); \quad \mathbf{E}_{ii}^{0} = \mathbf{E}_{i}^{0} \odot \sigma(\mathbf{E}_{i}^{0}\mathbf{W}_{g} + \mathbf{b}_{g}) \quad (1)$$

$$\mathbf{e}_{u}^{l+1} = \sum_{i \in \mathcal{N}_{u}} \frac{1}{\sqrt{|\mathcal{N}_{u}|}\sqrt{|\mathcal{N}_{i}|}} \mathbf{e}_{i}^{l}; \quad \mathbf{e}_{i}^{l+1} = \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{i}|}\sqrt{|\mathcal{N}_{u}|}} \mathbf{e}_{u}^{l} \quad (2)$$

$$\widehat{\mathbf{E}}_{u}^{l+1} = f(\mathbf{E}_{u}^{l+1}, \mathbf{E}_{uu}^{l+1}); \quad \widehat{\mathbf{E}}_{i}^{l+1} = f(\mathbf{E}_{i}^{l+1}, \mathbf{E}_{ii}^{l+1})$$
 (3)

$$\mathbf{E}_{u} = \mathbf{E}_{u}^{0} + \sum_{l=1}^{L} \frac{\mathbf{E}_{u}^{l}}{||\mathbf{E}_{u}^{l}||}; \quad \mathbf{E}_{i} = \mathbf{E}_{i}^{0} + \sum_{l=1}^{L} \frac{\mathbf{E}_{i}^{l}}{||\mathbf{E}_{i}^{l}||}$$
(4)



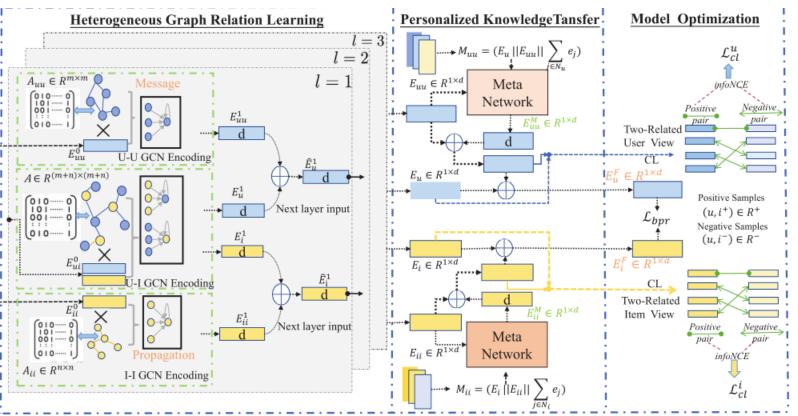
$$\mathbf{M}_{uu} = \mathbf{E}_{u}||\mathbf{E}_{uu}||\sum_{i\in\mathcal{N}_{u}}\mathbf{e}_{i}; \quad \mathbf{M}_{ii} = \mathbf{E}_{i}||\mathbf{E}_{ii}||\sum_{u\in\mathcal{N}_{i}}\mathbf{e}_{u}$$
 (5)

$$\begin{cases} f_{mlp}^{1}(\mathbf{M}_{uu}) \to \mathbf{W}_{uu}^{M1} \\ f_{mlp}^{2}(\mathbf{M}_{uu}) \to \mathbf{W}_{uu}^{M2} \end{cases}$$
 (6)

$$\mathbf{E}_{uu}^{M} = \sigma(\mathbf{W}_{uu}^{M1} \mathbf{W}_{uu}^{M2} \mathbf{E}_{uu}) \tag{7}$$

$$\mathbf{E}_{u}^{F} = \alpha_{u} * \mathbf{E}_{u} + (1 - \alpha_{u}) * (\mathbf{E}_{uu} + \mathbf{E}_{uu}^{M}); \tag{8}$$

 \mathbf{E}_{i}^{F} can be generated in a similar way.



$$\mathcal{L}_{cl}^{u} = \sum_{u \in \mathcal{V}_{u}} -\log \frac{\exp \left(s(\mathbf{e}_{uu}^{M} + \mathbf{e}_{uu}, \mathbf{e}_{u})/\tau\right)}{\sum_{u' \in \mathcal{V}_{u}} \exp \left(s(\mathbf{e}_{uu}^{M} + \mathbf{e}_{uu}, \mathbf{e}'_{u})/\tau\right)}$$
(9)

Analogously, we can obtain the InfoNCE loss \mathcal{L}_{cl}^{i} of items aspect.

$$\mathcal{L}_{cl} = \alpha_1 * \mathcal{L}_{cl}^u + \alpha_2 * \mathcal{L}_{cl}^i,$$

$$\hat{y}_{u,i} = \mathbf{e}_{u}^{F \top} \mathbf{e}_{i}^{F},$$

$$\mathcal{L}_{bpr} = \sum_{(u,i^{+},i^{-}) \in O} -\ln(\operatorname{sigmoid}(\hat{y}_{u,i^{+}} - \hat{y}_{u,i^{-}})) + \lambda ||\Theta||^{2}$$
 (10)

$$\mathcal{L} = \mathcal{L}_{bpr} + \beta * \mathcal{L}_{cl} \tag{11}$$

Experiment

Table 1: Performance comparison of all methods on different datasets in terms of NDCG and HR.

Data	Metric	SAMN	DGRec	ETANN	NGCF	KGAT	MKR	GraphRec	DANSER	HERec	MCRec	HAN	HeCo	HGT	MHCN	SMIN	HGCL
(100				0.6738					0.6730	0.6800	0.6772	0.6589	0.6867	0.6939	0.7053	0.7108	0.7376
	N@10	0.4561	0.4953	0.4665	0.4894	0.4512	0.4589	0.4730	0.4521	0.4712	0.4708	0.4469	0.4867	0.4869	0.4928	0.5012	0.5261
				0.7650					0.7714	0.7642	0.7630	0.7505	0.7998	0.8150	0.8201	0.8179	0.8367
	N@10	0.5614	0.5668	0.5663	0.5945	0.5578	0.5669	0.5751	0.5741	0.5495	0.5326	0.5275	0.5910	0.6126	0.6158	0.6137	0.6413
Valsa	_			0.8031					0.8077	0.7928	0.7869	0.7731	0.8359	0.8364	0.8344	0.8478	0.8712
	N@10	0.5516	0.5593	0.5560	0.5854	0.5501	0.5635	0.5679	0.5692	0.5612	0.5590	0.5604	0.5847	0.5883	0.5799	0.5993	0.6310

Table 2: Statistics of experimented datasets

Dataset	User#	Item#	Interaction #	Sparsity
Ciao	6776	101415	265308	99.9614%
Epinions	15210	233929	630391	99.9823%
Yelp	161305	114852	957923	99.9948%

Experiment

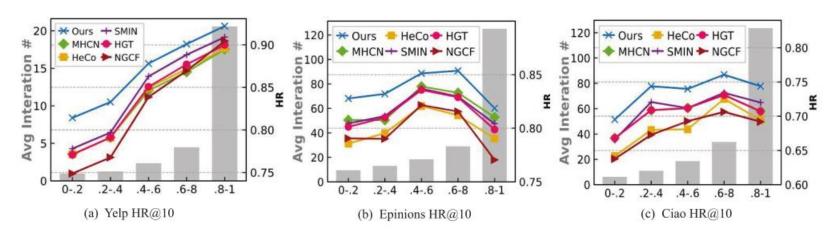


Figure 2: Performance comparison with respect to different data sparsity degrees on three datasets.

Table 3: Ablation study on key components of HGCL

Data	Ci	ao	Epin	ions	Yelp			
Metric	HR	NDCG	HR	NDCG	HR	NDCG		
w/o-cl	0.7124	0.5015	0.8176	0.6166	0.8471	0.6030		
w/o-meta	0.7215	0.5135	0.8247	0.6282	0.8585	0.6218		
w/o-ii	0.7116	0.5055	0.8245	0.6317	0.8573	0.6188		
w/o-uu	0.7149	0.5047	0.8285	0.6266	0.8533	0.6208		
HGCL	0.7376	0.5261	0.8367	0.6413	0.8712	0.6310		

of different methods, two widely-adopted metrics HR(Hit Ratio) and NDCG (Normalized Discounted Cumulative Gain) are used.

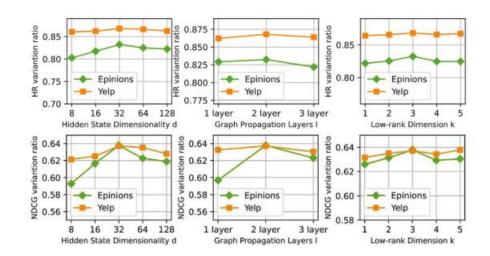


Figure 3: Hyperparameter study of the HGCL.

Experiment

User Cases from Ciao Dataset

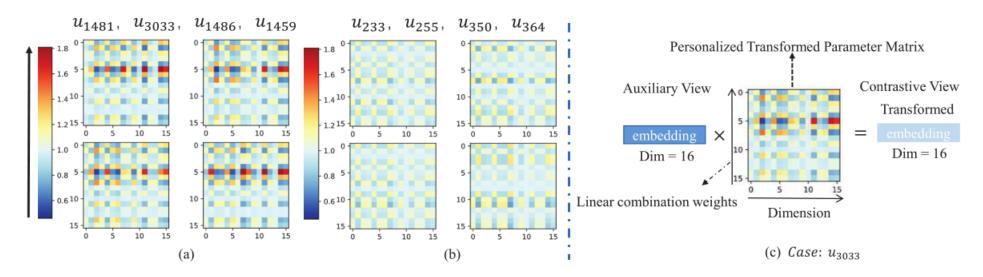


Figure 4: Case study on Ciao dataset to visualize the learned contrastive transformation matrices sampled from different users to reflect the diverse social influence. (a): Four users who are more likely to be influenced by their social relations; (b): Four users who are less likely to be influenced by their social relations. (c): The embeddings generated from auxiliary view will be transformed for representation contrasting for self-supervision augmentation of user-item interaction modeling.

Thank you!